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Deformations on coadjoint orbits
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Abstract. A deformation of the polynomial algebra S(&) on €* when S(@) is
a free 1(@) module (I(&) = algebra of invariant polinomials). This deformation
restricts nicely to a large class of orbits. We also give an example to show that
deformations of S(@) restricting to orbits may not always be defined by bidifferen-
tial operators.

0. INTRODUCTION

Deformations (and * products which form a particular class of deformations)
have been introduced by M. Flato, C. Fronsdal and A. Lichnerowicz (see for
instance [1]) in order to give a formulation of quantum mechanics without ope-
rators in the general framework of a Poisson manifold; this geometrical approach
to quantum theory is of a different nature from what one calls usually geometric
quantization [2, 3].

Geometric quantization has been from the start deeply related to the method
of orbits in the representation theory of Lie groups. In this context one of the
important results has been the description of unitary irreducible representations
of solvable groups [4] and of certains classes of representations of more general
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Lie groups using quantization of an orbit W of the group G in the dual € * of
its Lie algebra.

These considerations have motivated an attempt to construct representations
of a Lie group G using a certain deformation of the usual product of functions
on such an orbit W. This has been done by C. Fronsdal in certain semi simple and
compact cases [5] and by one of us (D.A.) and J.C. Cortet in the nilpotent case
[6].

Although this paper does not contain the word representation and is basically
of a technical nature, it is concerned with general constructions of deformations
on a set of orbits of a group G in ¥ * and is thus deeply related to the above
mentioned program. More precisely our motivations are the following.

There exist two different constructions of deformations on a set of orbits of
G: one, which is very algebraic in nature, and works for regular orbits of semi
simple groups [7]; the other one, which is more analytic, and works for all orbits
of a nilpotent Lie group [6]. Our first aim has been to incorporate these two
constructions in a unified general context.

On the other hand the deformations constructed for orbits of a nilpotent
group turn out to be «glued» together on a union of orbits which form a Zariski
open set U in €@*. This has allowed the construction of a so called nilpotent
Fourier transform [8]. Our second aim has been to extend the deformation
built on Uto a deformation defined on the whole polynomial algebra on @*;
this would in principle allow a «globalisation» of the nilpotent Fourier transform.

The results of this paper are the following. We first give a construction of a
deformation of the polynomial algebra S(%) on ¢ * in the case where S(¥) is
a free 1(%) module (I/(¥¢) is the algebra of invariant polynomials). This defor-
mation restricts nicely to those orbits W which have the property that the only
polynomials vanishing on W are elements of 7(¥). This construction generalizes
the one which is known in the semi simple case and contains a number of nil-
potent situations. This goes in the direction of unification mentioned above.

We then give an example to show that one may not hope to have a x product
on S(&), defined by bidifferential operators and restricting nicely to a large family
of orbitsin & *.

As deformations defined by bidifferential operators are easier to handle tech-
nically we end up by constructing a differential deformation for the class of spe-
cial nilpotent algebras; this deformation restricts nicely to the orbits of & con-
tained in a certain Zariski open set U of ¢*. This deformation is distinct from
the one considered in {6].

It is clear that these results should now be applied to representation theory
and in particular should be used in the construction of an adapted Fourier tran-

sform.
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The authors would like to thank their friend M. Flato who in the early stages
of this paper suggested the extension of the deformation to the whole of S(¥4).

1. DEFINITIONS AND NOTATIONS

Let G be a real connected Lie group; let & be the algebra of G and @* the
dual of @. The group G acts on @ * by the coadjoint representation

Gxg*—>g* :(g,E)—>g-Ed=fE°Adg‘1.

If X € @ one denotes by X*, the fundamental vector field on @* associated
this action:

d
£ = —(exp—tX-§,_ =tcadX.
def dr

We use the same letter X for an element of @, for the field of 1-forms on @*
and for the linear function on @ *

X :@*->R:E-(X, 6.

A Poisson structure on € * is defined by the antisymmetric 2-contravariant
tensor field A:

At(X,Y)=(E, [X, YD VX, Yeg.

If Wis an orbit of Gin ¥* andif§ € W, AE restricted to Wg“ is an antisymmetric,
non singular, bilinear form; the 2-form FE on W which corresponds to As by
duality is non singular and defines on W a symplectic structure [2] which reads

FAX*, Y*) =<, (X, YD VX, Yeg.

The action of G on W is symplectic and has a moment J which is simply the
canonical injection of W in @ *; the function on W corresponding to the funda-
menta!l vector field X * is the restriction to W of the function X:

I(X*)F=—dX|,.

The Poisson structure A on & * allows one to define the Poisson bracket of
€~ functions on @*:

{u,v}d=fA(du,dv) U, VE T (9*).

The symmetric algebra on ¢ *€, denoted S(¥%), is naturally identified to
the algebra of polynomial functions on €@ *, with complex values. For the ele-
ments X, Y € S(¥):
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(X, Y} =X, Y],

Thus the Poisson bracket on S(<¢) is the extension (as derivation) of the Lie
bracket of €.

DEFINITION 1. [1] Let N be an associative subalgebra of € ~(%*) stable by the
Poisson bracket; let E(/N;v) be the space of formal power series in v (€ C) with
coefficients in N. A deformation of N is a bilinear map N x N> E(N; »):

(u,v)>uxv= Z V’Cr(u, v)

r=0
such that:
1
Colu, v) = uv — (Cy(u.v) = C\ (v, u)) ={u, v}
3
“~
and such that, extended to E(V, v), it satisfies the associativity relation:
(uxv)*sw=u=x*(U=*xw) Yu,v,weN.
Remark. We shall also consider, in what follows, a deformation of an associative

and Lie subalgebra N' of the algebra of smooth functions on an open set 2 of
@* stable by the action of G.

DEFINITION 2. A deformation of N(C € ~(%*)) will be called a * product if,
forallr> 0,

C(u,v) = (= 1YC (v, u) Vu,veN.

DEFINITION 3. A deformation (resp. a * product) on S(%) will be called global
if it is the restriction to §(#) of a deformation (resp. of a * product) on € (% *).
A sufficient condition for a deformation (resp. a * product) on S(%) to be
global is that the C, be bidifferential operators; in this case we shall say that
the deformation (resp. the = product) is differential.

DEFINITION 4. A deformation of S(¥) is called covariant, if for all X and Y in
G-

1
— X+Y-YxX)={X, Y}
2v

Let ST be the space of homogeneous polynomials of degree p; a deformation of
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S(¥) is called graded if
Vr,p,qg €N Y(P,Q)e SP x S1 C(P,Q)eSP*a ",

A deformation of S(¥) is said to vanish on the constants if for all P € S(¥)
and forallr>0

C(1,P)=C,(P,1)=0.
A * product on S(%) which is graded is necessarily covariant.
DEFINITION 5. [9] Let £ be a G-invariant open set in ¢ *;let N be an associative
subalgebra of ¥~ (§2) stable by the Poisson bracket. A deformation of N is called

tangential if for every orbit W of G, contained in §2, and for all pairs of functions
u,vin N, such that u |, = v|,, one has:

(u*f)|w=(v*f)lw VfEN.

Let N6 ={feN|f(g-§)=f(¥), VEEG, VEE ¥*} be the space of G in-
variant functions. If = is a tangential deformation, if u € N¢ and v €N, then:

(uxv)|, = @v)|,.
Observe that u |, is a constant.
Example. Let % (9) be the universal envelopping algebra of 4% and let o :
:S(¢)~ U(%) be the linear bijection defined by symmetrisation:
1
o, X = — se}:Sp XX,

where the X i, (1 <k <p)e¥, where Sp is the permutation group of p elements
and where o denotes the product in % (¥). If:

U= 5 osh = & A

not I=0
we shall denote by u, the I-th component of u (€ % (%)). Define then, for
Pe SPand Q € §9:

PxQ=) (0¥ 0(P)oa(@),, )
r=0

One checks [7] that (1, 1) defines a * product on S(¥) differential, graded,
covariant. This * product is in general not tangential.
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2. ALGEBRAIC CONSTRUCTIONS

As in the previous paragraph S(¥%) denotes the symmetric algebra associated
to the complexification of the Lie algebra & of a connected Lie group G; it
is identified with the algebra of polynomilas on ¥ *; /(¢) or I will designate the
algebra of polynomials on ¢ * invariant by the action of G; S(#) is in an obvious
way an /(¢) module and we shall assume in what follows that it is a free /(€)-
-module. As a consewuence of proposition 7, §11 of Bourbaki, Algebra, 2, [10]
one has:

PROPOSITION 1. When S(%) is a free 1(€)-module, there exists a basis e; GielN)
of this module composed of homogeneous polynomials.

Proof. Observe that the assumptions which ensure the validity of Bourbaki’s

proposition are satisfied. Indeed if /= )EOI"= )EOS"ﬂI and if N=S5(¢)/

0 .
15(%) = T N*(where N* is just the canonical projection of S* on N), then each

N*is a I%~C module and thus admits a basis. This is the first assumption.
As S(%) is a free I-module, it is a consequence of Corollary 6, §7 of Bour-
baki, Algebra, 2 [10] (or directly checked) that the canonical homomorphism

1]
I ®, S(%)— S(@) :[(a, P)] = aP is injective. This is the second assumption and
thus proves proposition 1. L

PROPOSITION 2. If S(%) is a free I(&)-module, there exists on €* a deformation
of §(¥), denoted x, which is graded, covariant, and which vanishes on the con-
stants. Furthermore if there exists an open set §L of & *, stable by G, and such
that the only polynomials on @ *, whose restriction to an orbit W contained in
Q is zero, belong to I1(€) then =« is a tangential deformation of S(¥%) on S2.

Proof. Let Z(%) be the center of %(%) (= the universal envelopping algebra of
&) and let 8 :I(%)—-> Z(¥) be an isomorphism of associative, commutative
algebra such that:

) Va€I"=INS" one has 6(a)—oc@ed, = o oS)="0 !
n-1"y=y i1=o0

(where o : S5(%)— %U(%) is the symmetrisation map)

ii) VX €' one has 6 (X) = o(X).

Such an isomorphism always exist by a result of Duflo [11] (see Dixmier -
- Algébres enveloppantes, Theorem 10.4.5,10.4.4.,10.4.2.).

Let then P € S™(¥¢); by proposition 1, P can be written in a unique way
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P=Y ap¢ a; € (%)

where each e; (resp. a;) is a homogeneous polynomial of degree d; (resp. dl.')
such that d; + d; = n. Let

NiS(G) > UG) P> 8(a) o ole).

This is a linear bijection. Indeed if X € & NX)=0(X)and if P€ 1§0S’ =S,

not

one has:

AMP) =Y 0()eoa(e)=) o()eole)mod ¥, ,=

H 1

= Zo(ai eymod ¥, | =

= O(Z a; el.)mod U, =

=dP)mod ¥, _,.

Hence the conclusion by a recurrence argument as o is a linear bijection.
If P SP and Q € S9 define

PsQ=) Q)N P MD),, 4]

r=1

where Ui denotes the n-th component of the element # of % (%) in the decom-
position

UG = ° NS™.

By construction =* is graded; it is covariant by (ii). To prove associativity consider
PeSP QeST  ReS”:
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P xQxR=) (WX PN, ol *R =
=0

= Z ()" Z ©:2 10 N (Y0 LIN (o)) NI 9) N

=0 m=0

=) @y [Z [P N, 4 7\(R)](p+q+,:)J-
t=0

Observe that if £ > s, the formally identical terms would be O and thus:

PxQ*R=Y (2»)%“[2 [P MD 4 ¢y MBI, +H)]=
s=0 t=0

=Y @)NMP) e ND) AR s
s=0

which clearly proves associativity. Let us compute C(P, Q) (we denote as always

PxQ= > v"C (P, @)); with the same notation as above, and:
r=0

P= Zai e, degree a; + degree e, = p
a,€1(%)
Q= Z bi € degree bi + degree e =q
j
b, €1(%)

we get:

Z eOeS {Z(e(a)oo(e) 20(5,)00(e)), . , )]

In particular:

C)(P, Q) = A-I[Z (6(a) o 0(e) o 0(b) o ale)),, q)] =

ij
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_ xl[Z (0(a) o 0(e)) o 0()) o "(“’f”“’“”] )

Lj

ij

= )\"[Z a(a; e; b, e])(p+q)J= AP, Q)(p+q)] =

=N I\P, Q)] =PQ
as PQ € SP* 49, Similarly

1
S GEO—C Q. P)= rlBiZj 6(a;) > 0(e) o 6(b)oo(e) —

(p+q—1)]=

= )\—I[Z {e(ax) ° o(b/) ° ((O(ei) ° a(ei) B
L)

- o(b]) ° U(e].) ° B(ai) ° O(Ei)

_ a(e].) ° (J(e'.))}(p+ - l)]‘
1t is well known ([11] for example) that:
o(e'.) o o(e].) — a(e].) ° o(ei) = o({el., e].})

d.+d.—2

335

up to terms which belong to 'k@lo Qk (d,. (resp. d].) = degree of ¢; (resp. e,.)).

Hence:

1
S (CP.0) =@ P) = [ ((B(a,) « 6(b))  o({e;, e,.}))(,,+q_1)] =

s [Z("(“ ) 0(6))° 0({e, €y q- 1)]

=N\ o(abee (p+q- 1)]
tJ

iJ

=)\“1[Za({a A 1)]

= NP, QD)4 g_1y) = {P. O
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This completes the proof that x is a graded deformation of S(¥). Let now a €
€ I"(%) and compute:

axP=ax ) ae=) ) ()N U(6W@e0@)o0(e)),,, =
i i r=0

Y ) @ BGag) o oe)),, ) =

i r=0

It

s

(2v)’)\‘1()\(aP)(n s pp) = aP.

w
i
o

In particular if we choose @ = 1, we see that the deformation vanishes on the
contants. The deformation is also clearly tangential on £2; indeed if W is an
orbit of G contained in £ and if P, Q (€ S(%)) are such that P|w = 0|, we have:

P—Q|,=0.
Thus (P — Q) belongs to I(¥) and by the formula above:
(P—Q)*R)|p,=((P— Q) R)|,=0. -

Examples. 1) If € is semi-simple
S(%)=1(%) e H(4)

where # (%) is the G-invariant subspace of harmonic polynomials [12]. Thus
S(%) is a free I(¢)-module and proposition 2 applies. Furthermore if rank
¥ =1, I(%) is a polynomial algebra in / generators A,, . . ., A;. Thus any polyno-
mial P can be written in a unique way as:

i i
P=ZAl...4 4

Define then a map 6 : /(%) > Z(¥) by:

(ail...i, € H(%)).

O(A;‘ . .AI"‘) = U(Al)i‘o ..o a(A,)i'.

It is an isomorphism satistying (i, u) above. The deformation constructed by
means of @ has been studied in [7]; it is a * product which is tangential on the
open set of ¢* which is the union of the regular G-orbits.

ii) If @ is nilpotent, the map 0|1(g) (%) Z(%) is again such an isomor-
phism [11]; if S(%) happens to be a free I1(4)-module, proposition 2 applies.
Furthermore we will show in the next paragraph that there exists always an open
set £ in ¢* on which the deformation of proposition 2 is tangential; it turns out
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that is a * product. ,

iii) If ¢ is the 3-dimensional Heisenberg algebra, let us choose a basis {p, g, €}
such that the only non vanishing product is {p, q] = e. The algebra /(%) is the
polynomial algebra generated by e; the algebra S(¥) is a free 1(%) module
admitting as homogeneous basis {p’ ¢/ |i,j € N}. If we choose 0|, as isomor-
phism, the * product defined at the end of paragraph 1 has all properties indi-
cated in proposition 2, and it induces on 2-dimensional orbits the usual Moyal
* product on R2[1}].

3. DEFORMATIONS ASSOCIATED TO NILPOTENT LIE ALGEBRAS

Let & be a real n-dimensional nilpotent Lie algebra and let ¥4, C %, C...C
C¥%,C... Cg, =% beanincreasing sequence of ideal of ¢ such that dim 4, =
=i. Let us choose a basis {X;;i<n }of ¢ such that X, € ¥,\¢,_,. The follo-
wing facts have been proven by M. Vergne [13].

(i) There exists a Zariski open set §2 C @*, invariant by G (= the group
Ad G, where G is the connected simply connected group with algebra &), dense
in @* contained in the set of points £ of @*, whose orbit has maximal dimension.

(ii) There exist 2k rational functions Py Py 5 G of the variables
X, 1X,(®) = (X, &) (i <n)] which are regular on 2.

(iii) There exist r = n — 2k polynomial functions 7\1 .. .7\’ in the variables
X; (i<n).

(iv) There exists a Zariski open set U C R"~%¥,

These elements have the following properties:
a) There is a diffeomorphism § - U x IR?¥ defined by:

£~ (N, p(§), g (&)).

b) There is a bijection between the set of orbits contained in §2 and the points
of U:

L-Wr={seg*|\® =L

¢) Every orbit W contained in §2 admits a global Darboux chart defined by
the variables P;» 4; (i,j<k):

(PP }=14;,4;}=0 {ppa;} = 8.

d) Every invariant rational function on ¢* may be written in a unique way
as a rational function of A on R"~2%; Q is defined as {§ € @*|u(®) # 0} where
u is an ivanriant polynomial.

e) ForXew:
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k
X0 =) a@Np;+ayq. N
i=1
where a; (j=0,...,k) is a polynomial function of PR with coeffi-

cients which are rational functions of A, whose denominator is a power of u.
f) The Moyal * product in p and ¢ is defined on C~(£2), is differential, tangen-
tial and covariant by G.
We briefly recall the construction of Aral and Cortet [6], essentially to intro-
duce notations which we shall need later. The argument is an induction on the
index of the chosen sequence of ideals %, (0 <i<n). We shall denote:

Q(’);p].(i),q].(i);?\fli) (1 <j<k, 1<a<i—2k)

the elements defined in (i), (ii), (iii) above at the i-th step; furthermore Hl. :
:g;" —>gi*_1 is the projection corresponding to the canonical injection of &, _,
in 4, One distinguishes two cases:

1) The case where /(¥,) (tS(gi_]); then one proves that /(4,_,) C1(¥4)).
Furthermore there exists an element Z, e I(gi) such that:

Z, = aX, + B (cf. notations above: 0 £ € 1(%;_ ) N1(¥), BES(Y,_)).
The maximal dimension, d;, of the orbits in ¢ * is equal to d; . One defines:
pj(i)zpj(Fl)oI]i; q]_(i)zqi(i—l)oni 1<y <ki’ 2ki = di)
. - )
AD=Al-Dom,  (I<a<i—1-4d)
(i)
)‘iid, =Z
and the open set Q) =TI"1( Q" V) n{t e gx|a®) #0}.
2) The case where I(¥%,) CS(¥;_,); then one proves that I(gi) Cl(giﬂ).
Furthermore there exists A, €1(¥,_)\I(%,) such that {X,..)\Ci}: 4 where

O+ u El(gi) N I(%). The maximal dimension, d,, of the orbits in gi* is equal
tod, | +2. One defines:

A

vrgrogr k- T(explgd (B X,) - 8)
Q= QUM N{te gF [uE) +0)
pf” = p,-""”oup, q,("’: q,“‘”o 2 (1<j<ky)

A=A Vep  (I<a<i—2-4d; ).
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Observe that ¢ is defined only if u # 0.

The variables A, p, ¢ which are thus introduced by a recurrence procedure
allow us to define a Moyal product on C~(£2) or on the algebra N of rational
regular functions on §2. This % product is in general not defined on S(¥).

PROPOSITION 3. Let & be a nilpotent algebra and assume that there exists a
* product on @*, defined on S(¥), such that:

a*P=aP Va€ (%), YPES(¥).
Then this * product is tangential on the open set §2 defined in 3(i).
Proof. Let L € U(CIR" %) (cf. 3, (iv)) and let WL be an orbit in ¢* defined

by A(¢) = L (cf. 3, (b)). Let P be an element of S(%) vanishing on WL Then
(cf. 3,(c))

P=f\p, 9

where f is a polynomial in p, ¢ with coefficients which are rational functions
of A, defined on £2 and vanishing for A = L; that is:

a”()\)
I.J b1,JO\)

PO\ p,q) = Tq’

I=G,...i)i, €N (1<r<ky;p/=pl... pk
J=G,.. )i, €N (1<r<k);q’ =4 ...qF

and a; ; (resp. bl‘l) are polynomials such that a; J(L) = 0 (resp. b,j does not
vanish on §2). By the construction above, one sees that:
1,7 !
w )= —— P, (&)
4,

where PI‘J(E) € 5(%) and dl‘J(E) € I(¢) and does not vanish on £. If we define:

R®=[]w@ ,® b, ,0&NP=
I.J

=Y a4, @B ,® ] 4,® b,06)

K. L 4N+ K, L)

the * product of R by an arbitrary element @ of S(#) is:
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R+Q=[],,®b,,0@)PxQ
1.J

(using the assumption and (3(d))). Developping:

RxQ= Za,(,m(s))( [T d,® 5,005 *0

K, L 4N+ (K, L)

using again the assumption, 3(d), and the fact that d, ; €1(¥). Thus by restric-
ting to WL:

«, (&) b, ,(AE)) (P*Q) =
ﬂ » »

=Y 4,00 [l a4, 5,000, G 0], =0
K L

dN+#(K, L)

as aI’_,(L)= 0. The coefficient of the left hand side being different from O,
one gets

P+Q)| =0

and = is tangential. -

4. THE ALGEBRA ¢, A A COUNTEREXAMPLE

The algebra ¢, is a 5 dimensional real nilpotent Lie algebra, which can be
described, in a basis Xi (1 <i<5) by the only non vanishing commutators:

X, X,)=X, [X,X)]=X, [X, X]=—2X,

If we define g, = linear span of (Xl, .. ,Xl.) we get an increasing chain of
ideals as described in §3. Observe that if i <3, the algebra &, is abelian and
the orbits are thus reduced to points;in particular 1(<g3) = S(g3). Clearly I(g4) C
Cl(g3) as X3 is not an invariant function on {ﬁ"; hence we are dealing with
the second case of the recurrence procedure and d, = 2. Let us choose >\04 =X,

X4 the so named basis element; then u = X2 and

(4) (4) X3
Pq :X4; q, :’}_
2
@_y . 4y _
AW=Xx,;  AP=Xx,.



DEFORMATIONS ON COADJOINT ORBITS 341

On the other hand I( g4) C I(gs) as Xl, X2 are central; hence we are dealing with
the first case of the recurrence procedure and d, = 2. Let us choose Z = aX; + B
as invariant; one checks that a solution is

2

Then one gets:

p=p=X,; qP=q=—

not not X

S — - . (5) — _
2O = =X;; AP =A=X

not not

A= =X X.—-X1-X X,.
3not3 2775 3 174

Remark. The Moyal * product in the variables p and ¢q is not defined on S(¥).

A A
1 3
Indeed, let us compute X * XS2 with X, = )\qu +—p+ -;\— ;
2 2

2
14
2_y3 _ 2
Xy X3= X3+ — (X5, XD)

A2 X?
(XX =2—=2—
2 X2

which proves the point.

PROPOSITION 4. There does not exist on 4 * a = product defined on S(%),
which is differential and tangential on S). Furthermore S(%4) is a free I(¢) module
and thus the x product constructed in proposition 2 on S(%) is tangential.

Proof. Let = be the Moyal #-product on £2; it is tangential differential but not
defined on S(¥); assume *' is another * product which we assume to be tan-
gential, differential and defined on S(%). If we denote by C, (resp. Cr') the
cochains determining these two * products, one has [1] that:

§(C,—Cp =0 Cy(u,v) —C,(v,u) = 0= Cy(u,v) — Cy(v, u)

where & is the Hochschild coboundary operator. But a symmetric 2 cocycle is a
coboundary [14]and C, — Cz' beeing a bidifferential operator, one has

CZ_CZ’=§A (&)

where A4 is a differential one cochain [14]. If we write 9, for the operator
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53(— (1 <i<5), the formulas above show that:
i

X
1
0= By + — 2 9,=X,0; +2X,8,.

2
The classical expression of the Moyal product reads for Cy

2x1? :
2C(P, Q) = -1 (8,5P3,Q + E)SPa55 Q) + terms with polynomial coefficients
X

2
(P, Q€ S(9).

To prove the first part of the proposition it is sufficient to show that one can
not find a differential operator A, such that Cé= CZ—SA has polynomial
coefficients. Observe that the Moyal product vanishes on the constants and so
does the product *' as it is tangential; hence 4 has no terms of order O in the
derivatives; the terms of order 1 in the derivatives form a cocycle and thus do
not contribute to the relation (*). Now recall that if 54 is known, 4 is entirely
determined by combinatorial formulas [15] up to those terms of order one. As
Moyal and *' are tangential their cochains involve only the derivatives Bp and
aq, or in variables Xl., the derivatives 83, 84, 85. In particular

SAMX, X, ~X2—X X, P)=0 (**)

Using the combinatorial formulae just mentioned above, the differential operator
A also involves only those derivatives (see also [9] for a later version). We shall
thus write:

_ iy iy s
A= Z Ai3i4isa3 3535 -
iyt iyt ig>2

Developping (**) we get:

0= . Z = 2(].3 + 1)X3 Af3+1j4f5 - (j3 + 1)(j3 + 2)Af3 +2j4)¢ +
J3:1a:15

. . i3 f4 j5
+(]5 + I)XzAj3j4j5+1—(]4+ I)XlAj3i4+lj5) 83 a9, 85 P.
Hence, this beeing valid for any P:
(]'5 + 1)X2A1.3].4].5+l -, + DX, Aj3j4+1].5— 204, + 1)X3A’,3+]].4j5—~
. . _ Kk %
—(]3 + 1)(]3 + 2)A]'3+2]'4)'5 - 0 ( )
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As by assumption C, has polynomial coefficients, the only non polynomial term
in 84 is:
X1
02,000 = T polynomial terms.
: X,

5A

Hence using the combinatorial formulas, the corresponding non polynomial term
in A is:
X
A3 = — + polynomial terms.
2

To analyse the relations (***) we shall prove a technical lemma.

LEMMA. If the integer j;>a+ b, where a, b are non negative integers, the term
A’. iai of the differential operator A does not contain a polynomial of the form
3/4/s5

XS XEXSF(X,, X))

Proof of the lemma. The proof is by recurrence. Assume first thata = b = 0 and
that the term AJ.3 als contains a polynomial X ; for a certain j; > 0. If j3 > 1 the
relation (***) reads:

1

A= T B T DX

+ (]5 + 1)X2Aj3—1f4f5+l]

and this implies that A contains a polynomial X;* 1 In the case j3 =1,

J3+Lig.Js
the same argument applies because the only non polynomial term does not

. . , . . c
involve X ;. Thus if Ai3i41'5 (j;2 1) contains a polynomial X3, Ai3 +Ljgls
c+n

a polynomial X$*1. By recurrence A contains a polynomial X{™” in
3 3

contains

J3+1n,j4.Js
particular it does not vanish; but this contradicts the fact that A is a differential
operator, hence of finite order. We now assume that, ¥V & <m, there does not

exist a polynomial XfXé’ X;' in A1.3].M.5 with ]'3 >a + b = k. Examine the case 3>
>a+ b=m; if it contains X‘I’Xng, then using (***) one sees as above that

AJ.3 + Liais contains a term X‘I’Xé’ X3 *1 and iterating the argument one sees

that this contradicts the fact that A has finite order. ]

To conclude the proof of the first part of the proposition we shall now write
9 relations (***):
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(002) _2X3A102—2A202+3X2A003_X1A012= 0
(102) TAX Ay =645, +3X) A1 — X 4, =0
(012) —2X Ay, 24,0, +3X, A, —2X, A= 0
(021) T2X3 A — 24 + 2X, Ay, —3X, 4y =0
(120) —A4X Ay —6A3y+ Xy Ay —3X, 1 A13,=0
(210 —6X3A445,,— 124,40+ Xy Ay —2X, Ay, =0
(01D —2X3 Ay =240, +2X, 45, — 2X, Ay =0
(020) —2X3A450 = 2400+ X, Ay — 2X Ay =0
(111) —4X A4y, =645, +2X,4,,—-2X,A4,,,=0.

«Solving» these equations, using the previous lemma, gives
Ayp=aXl+ . Ay, =BX + .. 2a+B8=1 (i)
Ajp=—4aX X+ .. Ag,=40XI+ ..
Ay =4aX, X + . Ay =aX]+ .
Ay =20X X, + ...
and the two relations:
f—4a=20 —24a=0

which contradicts (i). Hence there does not exist A satisfying (*) and the first
part of the proposition is proven.

To prove the second part it is enough to show that S(¥) is a free /(¢) module,
as one can then apply proposition 2. Observe that any polynomial P can be
written as

P=F+ XA

where P, and P, are polynomials in X32. As:
- _ 2_ _

X=X X,=X, Xi=—XN+NX AKX,
one has a decompgsition of P:

P=Y PO\, N)XSXEX]

iJEN
e{0,1}

and PE_I.]. belongs to 1(#%). This decomposition is unique; hence S(%) is a free
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1(%) module. u

5. «SPECIAL» NILPOTENT LIE ALGEBRAS

The algebraic construction done in §2 rests on the assumption that S(¥) is
an 1(¢) free module. Dixmier [11] gives the following example of a nilpotent
algebra for which S(%) is not a free /(¢) module; it is the 5 dimensional algebra
with basis x, y, z, ¢, u and non vanishing brackets:

[x,y]=1¢ [x,z]=u.

This algebra belongs to a class of nilpotent algebras studied by Corwin and
Greenleaf [16], for which we present a construction of * product, which is
differential, tangential and graded.

DEFINITION 6. A nilpotent algebra ¢ is called «special» if it contains an abelian
ideal # whose codimension k equals 1/2 of the maximal dimension of the
orbits of the adjoint group in ¥ *.

Examples

(i) The 5-dimensional algebra defined above

(ii)) The algebra of 2n x 2n matrices which are upper triangular; the ideal
M has dimension n? and is composed of those matrices A such that A,=0
ifi>norifk <n.

(ili) The algebra of dimension (n + 2) with basis {p, 1,q,9% ...,q"} and
with non vanishing commutators [p, ¢'1 = ig"" 1, 1 <i<n.

If @ is a n-dimensional «special» algebra, we shall choose the increasing
sequence of ideals ¢; in such a way that ?n_k=./ﬂ. Hence for all i <n —k,
1({91.) = 8(%,) and the orbits are reduced to points, furthermore ifn —k <i<n
I(%;) CI(#,_)) and the maximal dimension of the orbitsis d; = 2(/ + k —n).

PROPOSITION 5. Let 4 be a n-dimensional «specialy» nilpotent Lie algebra. There
exists a = product on @ *, defined on S(%), differential, graded and tangential
on the Zariski open set S2.

Proof. This * product is constructed by induction using the increasing chain of
ideals ¢, and an adapted basis {X].; 1<j<n} of ¢ such that X, €¥;\g,_,.
Ifi<n—kandif P, Q € 5(¥%,) one defines

PxQ=PQ.

Ifn —k <i<nandif P, Q € S(¥,) one defines



346 D. ARNAL, M. CAHEN, S. GUTT

oo 1 (_l)m
PxQ }: Z (DY"3["mP x (DY " dm,

m'(l—m)' (-1

0
where 9, = 5—)—(1— and D, is a derivation of (S(g1~1) ANk

D(P x Q)=(D;P) + Q4P + D0

i—1 (i— {i—1)

defined by induction:

oo

— 2k n @)
Dl = Z v D2k

D ={X, .\

and ng) is a differential operator on @ |, with polynomial coefficients,
vanishing on the constants and on the linear functions and sending SP in SP~ 2%,
To give a meaning to the formulas above we extend D, to S(%,) (and thus also
to €7(%})) by requiring that:

D, (X,P) = (D,P) X,

and we extend ¢*0 to $(¥,) (and thus to €~(%,)) by requiring that

X, + P=X7P VP e S(¥).
(-1
The 7 product being the usual product of functions if j<n —k we shall

assume that B *1) is defined on S(%,_,) with all the properties mentioned in the
i

proposition, and we shall construct by induction the derivation D;. Observe first
that D’ ={X,, .} is a derivation of ,*, up to order v? (using Jacobi identity

and the usual properties of the Poisson bracket). Let us assume that:

!

A 2k p(@)
D'=3 »*DY

k=0

is a derivation of (.*1) up to order »21+2 Let us introduce a new product:
el

P*'Q=(€Xp—-tD')(exp tD'-P .* exp tD' Q)

-1

The expression exp — D' has a meaning because the coefficient of each power
of v is a finite sum of terms. Furthermore this product is associative, has the right
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parties and vanishes on the constants; hence is a * product. Now:

Y (—=DPCEVP, Q) + CEPDPP, ) + CEIP,DP Q) =0
2 +s=k

forall k <2/ + 1.
Thus:

0
a—-(P*'Q)=exp—tD'[—D' (exptD'P x exptD Q)+
t (i—1)

+D -exptD'P x exptD'Q +exptD'P « D'exptD' Q}=
-1 i-1

1

=v2’+2exp—tpg>[ Y (=DYCIV(exp tDPP, exp 1D O)+

2j+s=21+2
5>0

+ Cy'”(Dg.) exp th)P, exp th)Q) + Cs(i‘l)(exp th)P, D‘z"].) exp IDg)Q))]
+ higher order terms.

As C,=CI™D for all k<2I+1, Cy;,; and C§Y differ by a cocycle and in

view of the symmetry, this cocycle is a coboundary:

4 _ -1 _§pi
C21+2_ C21+2 6D21+2'

The expression above show that, at order 2/ + 2,and at ¢ = 0,

r . _ (‘_1
Cyp i ot =00=C Y.

Let us define:

0
G _— _ p
DY, o= ot Dyis 2|z=0'
By induction and use of the combinatorial formulas mentioned above [15] one
sees that D(2']) sends polynomials of degree k, on polynomials of degree k — 2j,
that it vanishes on the constants and annihilates polynomials of degree 1; the
same is then true for D) ,. We can rewrite the previous relations as:

ni — DD 2
Dy, ,=1D§), ,+ 007

' ) 2 _ ti-1)
CopyaH 18Dy, +007%) = C5 -

Define then:

—n' 21+ 2 ()
D=D +v D21+2
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and a new product:

P+" Q=-exp—tD(exptDP = exptDQ)=
(-1

=P ' Quptoorderv?* 2=

=P x Quptoorderv?+2,

(-1

We have:
Cyr o (P.O)=C}y, (P, Q)+ 1EDW (P, Q) +0(t?) =
=C{ BP0+ 00
and thus
d
— (P+"Q) = O up to order v ¥ +3,
or £=0
On the other hand:
0
— (P+" Q) =—D@ x Q)+ DP « Q)+ (P = DQ)
ot t=0 (i-v i-1 (i—1)

I+4 we must show that

and thus to show that D is a derivation up to order »?
0
% Px+" Q) vanishes to this order. This we shall now prove and this will
t=0
ensure the existence of the derivation D(i) by recurrence.
We have:

? d ,
5‘ C;'H 3(P, Q) = ; C£1+ 3P, Q) + aD:(zlz)+ 2
t 1=0 1=0

!

where d denotes the Chevalley coboundary. As C] = Cl.' forj<?2l+1, C21+ , =

=Cc{ - thé’.IL ,+ 0(r?, one gets by standard results [17] that:

Cyy3=Ciy—13DG), , + A1) + 0(1?)

where A(¢#) is an antisymmetric bidifferential operator of order 1 in each
argument. Then:

0 .
= = (G}, 5(P. Q) + 13D, (P, Q)

t=0

0
— Cyy4 5P, Q)
3y 2043

t=0

0
= — (AG)XP, Q)
of

t=90

>
= o (G Q) + AP, O)

t=0
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To compute this, it is enough to evaluate, for k,j <i—1,
X, X, = exp— tD' (exp tD'X, * exp tD'X].) =
i—1
= exp —tD' (exp tD{’ X, * exp tD(‘)i)Xl.) =
i—1

= exp —tD' (exp tD(()")Xk exp tD(()")X/. +viexp tD(()i)Xk, exp tD(()i)X].}).
Hence:
Cy 43X X)) = (exp —tD"),;, , exp 1D X, X}

where (27 4+ 2) denotes the component of this order in the v-expansion.
Thus:

) 9 '
— ANX,, X))| = — ((exp —1tD"),,, ,exp tD{X,, X +
ot 0 ot r=0

0
Hence — C

5 Cares =0 and thus D is a derivation up to order p2+4 Thus

t=
the derivation ofi_*l on S(%;_):

) o
DO={x, }+ ) v*DY
k>0

has terms for all k> 0 vanishing on the constants and on the functions X]. G
<i—1); furthermore Dgl) .Sp gp-2
To complete the proof we now check if the formula given above:

=n"
DY"dl"mpP x (DY ™" Q
i—1

defines a * product which is tangential on £2.
By simple use of the definition we get:
COP, Q) = PQ
CHP, Q) ={P, Q) ={P.Q};_, + 9,PD,Q —D,P3,Q
where {,} denotes the Poisson bracket on S(gr) extended to S(¥)
COP, Q) = (— 1Y C(Q, P).
Alsoif P, Q € S(@i_l) one has:



350 D. ARNAL, M. CAHEN, S. GUTT

P*Q P« Q.
i—1
In particular u * v = uv if ¥ and v belong to S(% ).

foess, )
X, xQ=X,0+v{X, 0} +v3-DPQ+ . ..

!
In particular this product is covariant as the Dg) (j > 0) vanish on the linear
functions. The product is defined on S(gi) and graded.
Let now a € (%) (C S(A)Y); then:

a*P=Zvl
i 1=0

We shall prove that DY 4 ={Xi,a 1= 0 (as a is invariant); this will of course
imply that the product is tangential. It is enough to prove that for any u € S(# ),
DY u={X, u}. To do this we proceed by induction on the degree of u; for
the degrees 0 and 1 it is true by construction. Then for X/. e, ucS M)

a x 9] P.
i—1

D(i’(Xl..u) D(’)(X * U)=

1—1

=D(i)X * u+X * Diy=

1—1 1—1

={X.,X.} » u+X, x {X,.,u}=

AR i-1
X}u+X{X up=1{X, X, u}.

The last point to prove is associativity. Making everything explicit we get:

! I m l-m (_1)’"*"1'
P ) R =
(PO ,,Z_OMZOMZ Z: g m' W= m")r\m — ) - 51— m — 5)!
D(x)r+m al—m +5p 4 D(t)l—m +m-ram ‘+1-m- sQ (t)IémaimR

i—1 i—1

- a 7 b (- 1)b+b'

-b
Pf(QTR)= }: Z Z ng v b'la —b)cl(b—c)dia—b—d)!

2,8’ =0b=00b"=0

D(Z)baa bP % D(x)d+b ac+a Q D(t)a b-d+a bab c-ibR

-1 i—1
and associativity is proven by setting

a=10'"+s+r c=m
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b=m'4r d=10—m'
a=1—r—s
b'=m-—r

and checking the inequalities. This ends the proof. L

REFERENCES

{11 F. BAYEN, M. FLATO, C. FRONSDAL, A. LICHNEROWICZ, D. STERNHEIMER: Deforma-
tion theory and quantization, 1 and 11, Ann. of Physics (1978) 61 - 151.

[2] B. KOSTANT: Quantization and Unitary representations, Lect.in Modern Analysis III
p. 87 - 208. Lecture Notes in Math. 170, Springer 1970.

[3] J.M. SOURIAU: Structure des systémes dynamique, Dunod 1970.

[4] L. AUSLANDER, B. KOSTANT: Quantization and unitary representations of solvable
Lie groups, Bull. Amer. Math. Soc. 73 (1967) 692 - 695.

[S] C. FRONSDAL: Some ideas about quantization, Reports on Modern Physics Vol. 15
1978, p. 111 - 145.

[6] D. ARNAL, J.-C. CORTET: * products in the method of orbits for nilpotente groups,
Journal of Geometry and Physics Vol. 2,n° 2 (1985) 83 - 116.

[7] M. CAHEN, S. GUTT: An algebraic construction of = product on the regular orbits of
semi simple Lie groups, A volume of honour of 1. Robinson. Bibliopolis. Naples (under
press) or CRAS Paris, 296 (1983) 821 - 823.

[8] D. ARNAL, J.-C. CORTET: Nilpotent Fourier transform and applications, LM.P. 9 (1985)
25-34.

[9] A. LICHNEROWICZ: Variétés de Poisson et feuilletage, Ann. Fac. Sc. Toulouse (1982)
195 - 262.

[10] N.BOURBAKL: Algebre 2, Gauthier Villars.

[11] ). DIXMIER: Algébres enveloppantes, Gauthier Villars (1974).

[12] B. KOSTANT: Lie group representation on polynomial rings, Am. J. Math. 85 (1963)
327 - 404.

[13] M. VERGNE: La structure de Poisson sur lalgébre symétrique d’une algébre de Lie
nilpotente, Bull. Soc. Math. France 100 (1972) 301 - 335.

[14] J. VEY: Déformation du crochet de Poisson sur une variété symplectique. Comment.
Math. Helvet. 50 (1975) 421 - 454.

{15] S. GUTT: Thése Bruxelles 1980 ou L.M.P. 6 (1982) 395 - 404.

{16] CORWIN, GREENLEAF: Fourier transforms of smooth functions on certain nilpotent
Lie groups, J. Funct. Anal. 37 (1980) 203 - 217.

[17] O.M.NEROSLAVSKY, A. VLASSOV: C.R.A.S. Paris 292 (1981) 71.

Manuscript received: June 20, 1986.



