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Deformations on coadjoint orbits
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Abstract. A deformation of the polynomialalgebra S(~)on ~ when S(~1)is
a free I(~)module (I(ç~)= algebra of invariant polinomials). This deformation
restricts nicely to a large class of orbits. We also give an exampleto showthat
deformationsof S(~)restricting to orbits maynotalwaysbedefinedby bidifferen-
tial operators.

0. INTRODUCTION

Deformations(and * productswhich form a particularclassof deformations)
have been introducedby M. Flato, C. Fronsdaland A. Lichnerowicz(see for

instance[1]) in order to give a formulation of quantummechanicswithout ope-
ratorsin the generalframeworkof a Poissonmanifold;this geometricalapproach
to quantumtheory is of a different naturefrom whatonecallsusuallygeometric
quantization[2, 3].

Geometric quantizationhas been from thestartdeeplyrelatedto the method

of orbits in the representationtheoryof Lie groups.In this contextone of the
important results hasbeenthe descriptionof unitary irreduciblerepresentations
of solvablegroups [4] andof certainsclassesof representationsof more general
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Lie groups using quantization of an orbit W of the group G in the dual ~ * of

its Lie algebra.
Theseconsiderationshave motivated an attemptto constructrepresentations

of a Lie group G usinga certain deformationof the usualproduct of functions
on suchan orbit W. This hasbeendoneby C. Fronsdalin certainsemisimpleand

compactcases[5] andby one of us (D.A.) andJ.C. Cortet in the nilpotentcase
[6].

Although this paperdoesnot contain the word representationandis basically
of a technical nature,it is concernedwith generalconstructionsof deformations

on a set of orbits of a group G in ~ * andis thus deeplyrelatedto the above

mentionedprogram.More preciselyourmotivationsarethe following.

There exist two different constructionsof deformationson a setof orbits of

G: one, which is very algebraicin nature,and works for regularorbits of semi

simplegroups [7]; the otherone,which is moreanalytic,andworks for all orbits
of a nilpotent Lie group [6]. Our first aim has beento incorporatethese two

constructionsin a unified generalcontext.
On the other hand the deformationsconstructedfor orbits of a nilpotent

group turn out to be <<glued>> togetheron a union of orbitswhich form a Zariski

open set U in f~*,This has allowed the constructionof a so called nilpotent
Fourier transform [8]. Our second aim has been to extend the deformation

built on Uto a deformationdefined on the whole polynomial algebraon
this would in principle allow a <<globalisation>>of the nilpotentFouriertransform.

The resultsof this paper are the following. We first give a constructionof a

deformationof the polynomial algebraS(~)on ~“ in the casewhereS(~)is
a free I(f~) module (I(f~) is the algebra of invariant polynomials). This defor-
mation restrictsnicely to those orbits W which havethe property that the only

polynomialsvanishingon W are elementsof I(fg~l.This constructiongeneralizes
the one which is known in the semi simple caseand containsa numberof nil-

potentsituations.This goesin the directionof unification mentionedabove.
We thengive an exampleto show that one may not hopeto havea * product

on S(~),definedby bidifferentialoperatorsandrestrictingnicely to a largefamily

of orbitsin ~
As deformationsdefinedby bidifferential operatorsare easierto handletech-

nically we end up by constructinga differential deformationfor the classof spe-
cial nilpotent algebras;this deformationrestrictsnicely to the orbits of G con-

tained in a certain Zariski openset U of f~”.This deformationis distinct from
the oneconsideredin [6].

It is clear that these results should now be applied to representationtheory

and in particularshouldbe used in the constructionof an adaptedFourier tran-
sform.
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The authorswould like to thank their friend M. Flato who in the earlystages
of this papersuggestedthe extensionof the deformationto the whole ofS(~).

I. DEFINITIONS AND NOTATIONS

Let G be a real connectedLie group; let ~ be the algebraof G and ~ the

dualof (g. Thegroup G actson cg* by the coadjoirit representation

Gx~*~+~*:(g,fl-*g~ ~oAdg~’.
def

If XE g one denotesby X*, the fundamentalvector field on ~g* associated
this action:

d
X~= ~

def dt

We use the sameletter X for an elementof ~, for the field of 1-forms on

and for the linearfunctionon g *

~

A Poisson structureon f~* is definedby the antisymmetric2-contravariant

tensorfield A:

A~(X,Y) = (~,[X, Y]) VX, YE ~.

If W is an orbit of G in ~ * and if ~E W,AE restrictedto W~’is an antisymmetric,

non singular, bilinear form; the 2-form on W which correspondsto A~by
duality is non singular and defineson W a symplecticstructure[2] which reads

Ft(X*, ~*) = (~,[X, Y]) VX, YE f~.

The action of G on W is symplecticand has a momentJ which is simply the
canonicalinjection of W in ~g*; the function on W correspondingto the funda-

mentalvectorfield X* is the restrictionto W of thefunctionX:

i(X*)F dXIw.

The PoissonstructureA on g * allows one to definethe Poissonbracketof

~ functionson fq*:
{u,v}= A(du,dv) u,VE~~(~*).

def

The symmetric algebra on ~ç~. denotedS(~),is naturally identified to

the algebraof polynomial functions on s”, with complex values. For the ele-
mentsX,YES(~):
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{X, ~ [X, Y]~.

Thus the Poisson bracket on S(fç) is the extension(as derivation)of the Lie

bracketof~.

DEFINiTION 1. [1] Let N be an associativesubalgebraof ~ stable by the

Poissonbracket; let E(N; ~) be the spaceof formal powerseriesin V (E C) with

coefficientsin N. A deformationofN is a bilinearmapN xN-÷E(N; z.’):

(u, v) —* u * u = prC(U v)
r~O

suchthat:

C0(u,u)=uv — (C1(u.v)—C1(v,u))={u,v}

and suchthat,extendedto E(N, v), it satisfiesthe associativityrelation:

(u*v)*w=u*(v*w) Vu,v,wEN.

Remark.We shall also consider,in what follows, a deformationof an associative
and Lie subalgebraN’ of the algebraof smooth functionson an open set f2 of
~ stableby the actionof G.

DEFINITION 2. A deformationof N(C ~°((~~*)) will be called a * product if.

for allr> 0,

Cr(U~v) = (— 1 )rC(v u) Vu, vEN.

DEFINiTION 3. A deformation(resp. a * product)on S~~)will be calledglobal

if it isthe restrictiontoS(~)of a deformation(resp.of a * product)on

A sufficient condition for a deformation (resp. a * product) on S(~)to be
global is that the C~be bidifferential operators;in this casewe shall say that

the deformation(resp.the * product) is differential.

DEFINITION 4. A deformation of S(’~)is calledcovariant, if for all X and Y in

—(X* Y—Y~X)={X,Y}.

2v

Let S
1’ be the spaceof homogeneouspolynomialsof degreep; a deformationof
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S(f4’) is calledgraded if

Vr, p, q E IN V(P, Q)ESt’ xS~ CT(F, Q)EsP+Q-r.

A deformationof S(~)is said to vanish on the constants if for all FES&)
andforallr> 0

Cr(l,P) = Cr(P~ 1) = 0.

A * producton S(~)which is gradedis necessarilycovariant.

DEFINITION 5. [9] Let &2 be a G-invariantopensetin .g*; let N be anassociative
subalgebraof ‘t~’~(~2)stableby the Poissonbracket.A deformationof N is called
tangential if for every orbit W of G, containedin ~, andfor all pairsof functions

u, v in N, suchthat u = ~ one has:

(u*f)j~=(u*f)~~ VfEN.

Let NG = { fE N~f(g. ~)= f(s) Vg E G, V~E ~ } be the spaceof G in-
variant functions. If * is a tangential deformation,if u E NG and vEN, then:

(u * v)I~= (uu)Iw.

Observethat u is a constant.

Example. Let ‘~Zi(s’) be the universalenvelopping algebraof ¶~ and let a
S(~g)—~ ~/(~) be thelinearbijection definedby symmetrisation:

a(X. ...X.)=— X. o...oX.1P p! ~ ~s(I) s(p)

wherethe X. (1 ~ k ~ p) E ~‘, whereS is the permutationgroupof p elements
P

andwhereo denotesthe productin QI (~).If:

~ a(S1) = e all!
1=0 not l0

we shall denote by u~ the l-th component of u (E ~ Define then, for

FES1’andQES’1:

P * Q = (2vYo~[(o(F) OU(Q))~+qr)I•

One checks [7] that (1, 1) defines a * product on S(~g)differential, graded,
covariant.This * productis in generalnot tangential.
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2. ALGEBRAIC CONSTRUCTIONS

As in the previousparagraphS(~)denotesthe symmetricalgebraassociated
to the complexification of the Lie algebra c~gof a connectedLie group G; it
is identified with the algebraof polynomilas~ ~f*. I(f~) or I will designatethe

algebraof polynomialson ~ invariantby the actionof G;S&) is in an obvious
way an I(~q) module and we shall assumein what follows that it is a freeI(~ç)-

-module.As a consewuenceof proposition7, § 11 of Bourbaki, Algebra, 2, [10]

one has:

PROPOSITION 1. WhenS(fq) is a free I(fq)-module, there existsa basise~(i E IN)

ofthis modulecomposedofhomogeneouspolynomials.

Proof Observethat the assumptionswhich ensure the validity of Bourbaki’s

proposition are satisfied. Indeed if I = ~ = ~ S1’ fl I and if N = S(~’)/
0 x>0 x>0
I S(~) = ~ Nx (whereNx is just the canonicalprojectionof S’5 on N), theneach

not

N>’ is a — C module and thusadmits a basis.This is the first assumption.
As S(~)is a free I~module,it is a consequenceof Corollary 6, §7 of Bour-

bald, Algebra, 2 [10] (or directly checked) that the canonical homomorphism

~ I ®~S(f~)-+ S(f~): [(a, F)] —+ aP is injective. This is the secondassumptionand
thusprovespropositionI.

PROPOSITION 2. If S(fq) is afreeI(’~g)-module,there existson a deformation

of S(fg), denoted *, which is graded, covariant,and which vanisheson the con-

stants.Furthermore if thereexistsan openset ~2of ~ “, stableby G, and such

that the only polynomialson ~ *, whoserestriction to an orbit W containedin
fZ is zero, belong to I(f~) then * is a tangentialdeformationof S(f~)on

Proof Let Z(f~)be the centerof al1(~) (= the universalenveloppingalgebraof
f~) and let U : I(f~)-÷Z(~) be an isomorphism of associative,commutative

algebrasuchthat:

i) VaEP=IflS’7 one has O(a)—a(a)E~
1=~’e o(S’)=”E0

1 tJ~/l

(wherea : S(~)—* Ql(~) is the symmetrisationmap)
ii) VXEI1onehasO(X)=cJ(X).

Such an isomorphism always exist by a result of Duflo [11] (see Dixmier -

- Algèbresenveloppantes,Theorem10.4.5, 10.4.4., 10.4.2.).

Let thenFE5~?(~);by proposition1, P canbe written in a uniqueway
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P=~a~e1 a~EI(f~)

where each e1 (resp. a1) is a homogeneouspolynomial of degreed. (resp. d)

suchthat d. + d = n. Let

X:S(~)-+ Ql(~) :P~+E0(aj)oa(ej).

This is a linear bijection. Indeed if XE ~, X(X) = a(X) and if FE ~ 5’ =
1=0 not

onehas:

X(F) = ~ 0(a1)o ci(e.) = ~ a(a1)o a(e1)mod Ql1~ 1 =

= ~a(a~e1)mod ~n-l

= a(E a1 ei)mod Ql~1=

=a(P) mod

Hencethe conclusionby a recurrenceargumentas a is a linearbijection.

IfFES~’andQE5~define

P * Q = ~ (2vYX

1[(A(F) OX(Q))(p+q~r)]

whereu(~) denotesthe n-th componentof the elementU of al1(~)in thedecom-

position

~ A(S’T).
n=0

By construction* is graded;it is covanantby (ii). To proveassociativityconsider
FE5lt,QE5~,RE5T:
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(P * Q) * R = (2vY?Xl[(X(P) oX(Q))(~~q—n)1 * R =

=~(2v)n~(2p)mX_1[(X(p)oA(Q))(P+qn)oX(R)](p+q_n+rm)=

=~(2P)~X~1[E[X(P)0X(Q)](P÷q_t)OX(R)](P+q+r_s)].

Observethat if t >s, the formally identical termswould be 0 and thus:

(F* Q) *R =~ (2v)~X~[E[X(F)OX(Q)](P+q_r)OX(R)](P+q

~ (2v)sX~[X(P) oX(Q) ~X(R)](P+q+r_s)

which clearly provesassociativity.Let us computeC
0(P, Q) (we denoteas always

P * Q = ~ vrC~(P, Q)); with the samenotationas above,and:
r0

F= ~a1 e, degreea~+ degreee, = p

a, EI(f~)

Q = ~ b. e1 degreeb. + degreee1 = q

b1 EI(f~)

weget:

F * Q = E (2vYA (0(a1) o a(e1) oO(b1)o a(e1))~~+ q

In particular:

G0(P, Q) = X1~~ (0(a1) a a(e1) o0(b1) 0 u(ej))(p+q)] =
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= X (u(a
1) a a(e~)0 a(b,) a a(e/))(~+ q)] =

i,j

= X1[~u(a. e. b. e.) ]= X~[X(P,Q)(p+q)] =
i z j / (p+q)

Li,j

= X’[X(P, Q)] = PQ

asPQ E S~’+ q Similarly

— (C1(F, Q)—C1(Q,F))= X1[~0(ai)oa(ei)o0(b~)oa(ei)_
1,j

— 0(b1.) o a(e1)00(a1) 0

= X {0(a~)00(b1) 0 ((a(e~) o a(e~)—

i,f

— u(e1) 0 u(ej))}(p+q_1)].

It is well known ([11] for example)that:

a(e1) a a(e1)— a(e,,) 0 a(e1)= a(~e1,e1})

d + d —2

up to termswhich belongto ~ ó/jk (d1 (resp. d1) = degreeof e, (resp. e1)).
Hence:

— (C1(F, Q) — C1(Q,F)) = X ~ ((0(a1) 0 0(b1) o a~e1,~}))~~+ =

2

= X1[~(o(a1) u(bj)ou({ej,ef}))(p+q_l)]=
L~,i

=X_f~a(ajbf{ej,ej})(p+q_l)]=
Li./

= a({a1 e1,~ ej})~~+~_i1]=

Li,’

= ~ Q ~ = {P, Q}.



336 0. ARNAL, M. CAHEN, S. GUTT

This completesthe proof that * is a gradeddeformationof S(~). Let now a E

EI”(~)and compute:

a * F = a * a1 e1 = ~ r~ (2vYX’[((O(a) 00(a1) 0 a(e.))( +p-r)~=

= ~ (2~x~
1[(0(aa

1) 0 a(e~)(fl + p-r)~=

I r=0

= (2~YX~’(X(aP)~0+ p-r)~ = aP.

In particular if we choosea = 1, we seethat the deformationvanisheson the

contants.The deformation is also clearly tangential on ~2; indeedif W is an
orbit of G containedin ~ and if P, Q (ES(~)) aresuchthatPh~= Q lw we have:

(~—Q)I~=0.

Thus(F — Q) belongstoI(~) andby the formula above:

((F_Q)*R)1w((P Q).R)l=0

Examples. i) If (~ is semi-simple

S(fc)=I&) ®~r(f~)

where .)~°(~)is the G-invariant subspaceof harmonicpolynomials [12]. Thus
S(f~) is a free I(~)-moduleand proposition 2 applies. Furthermoreif rank

= 1, I(f~) is a polynomialalgebrain I generators,~,..., ~ Thusany polyno-

mialP can be written in auniqueway as:

F = ~ ,~‘. . . a1 (a~ E ~°(~fl.

Define thena map 0 :I(f~) -÷Z(~) by:

0(~ .. . ~‘) = a(~~)”0.. ~a

It is an isomorphism satisfying (i, 11) above.The deformation constructedby

meansof 0 hasbeenstudied in [7]; it is a * productwhich is tangential on the

opensetof ~‘~‘ which is theunion of theregularG-orbits.

ii) If ~ is nilpotent, the map a IJ(~): I(f~)~ Z(l~)is again such an isomor-
phism [11]; if S(~)happensto be a free I(~)-module,proposition 2 applies.

Furthermorewe will show in the next paragraphthat thereexists alwaysanopen

set &2 in ~“ on which the deformationof proposition2 is tangential;it turnsout
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that is a * product.
iii) If ~gis the 3-dimensionalHeisenbergalgebra,let us choosea basis{p, q, e}

such that the only non vanishing product is [p, q] = e. ThealgebraI(~) is the
polynomial algebra generatedby e; the algebraS(~) is a free I(f~) module

admitting as homogeneousbasis{p’ q’ i,j E iN). If we choose as isomor-
phism, the * product definedat the end of paragraph1 hasall propertiesindi-
cated in proposition 2, and it induceson 2-dimensionalorbits the usual Moyal
* producton 1R2[l].

3. DEFORMATIONSASSOCIATED TO NILPOTENT LIE ALGEBRAS

Let ~ be a real n-dimensionalnilpotent Lie algebraand let C C . . . C

C C... C = ~ be anincreasingsequenceof idealof ~ suchthatdim =

= i. Let us choosea basis {X
1 I ~( n }of ~ suchthat X, E ~ \ ~. ~. The follo-

wing factshavebeenproven by M. Vergne[13].

(i) There exists a Zariski open set ~l C ~, invariant by G (= the group
Ad G, where G is the connectedsimply connectedgroup with algebra~), dense

in ~, containedin the set of points~of ~, whoseorbit hasmaximal dimension.
(ii) There exist 2k rational functionsp p~,q~ ~ of the variables

X. [X.(~) = (X., ~) (i ~ n)] which areregularon
~ def ~

(iii) There exist r = n — 2k polynomial functions A1.. . A,. in the variables
X,(i~<n).

(iv) Thereexistsa Zariski openset U C lR’~
21’.

Theseelementshavethe following properties:
a) Thereis a diffeomorphismf~-+ U x ~2k definedby:

-* (Me), pW, q(~)).

b) Thereis a bijection betweenthe setof orbitscontainedin f2 and thepoints
of U:

L~ WL={~E~*~X(~)=L1.

c) Every orbit W containedin ~7 admitsa global Darbouxchart definedby

the variablesp
1, q. (i,j ‘~ k):

0 {p1,q1} = ~.

d) Every invariant rational function on ~ * may be written in a uniqueway
as a rational function of A ~ lR’~

2~’~~2is definedas E ~ iz(~)* 0} where
i1 is an ivanriantpolynomial.

e) ForXEfç:
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(X,~)=~ a
1 (q,X) p1 +a0(q,X)

where a1 (j = 0 k) is a polynomial function of q1 + ~. q~with coeffi-
cients which are rational functions of A, whose denominatoris a power of ii.

fi The Moyal * productin p andq is definedon C(~2), is differential, tangen-

tial andcovariantby G.
We briefly recall the constructionof Amal and Cortet [6], essentiallyto intro-

ducenotations which we shall needlater. The argumentis an induction on the
index of the chosensequenceof ideals ‘~g~(0 ~ i (n). We shall denote:

p7~,q7~X~ (1 (j(k1, I (a(i—2k1)

the elementsdefined in (i), (ii), (iii) aboveat the i-th step; furthermorefl,

—~~i!~ is the projection correspondingto the canonicalinjection of ~ -1

in ~g1.Onedistinguishestwo cases:
1) The case where I(f~1) ~ S(~g11); then one provesthat I&,~) C I(~’~).

Furthermorethereexistsan elementZ, E I(~’~)suchthat:

= aX, + j3 (cf. notationsabove:0 * aEI(~’11)n I(~’), 1~ESV~1_1)).

The maximal dimension, d1, of the orbits in is equalto d1_1. One defines:

p
t’~—p~’’~oHq(1)=q(11)oll. (1 (j(k

1,2k1 = d,)

~ ~ fl, (1 (a (i —1 — d1)

=

andtheopenset ~ = H:’(~7~’~)fl ~ E ~g1*a(E) * 0).
2) The case where I(fg~)C S((g,1); then one provesthat I(~g1)C I~g11).

Furthermore there exists X~EI(~11)\J(~~) such that {X1.X~}= j.i where

0*pEI(~’1) flI(~).The maximal dimension, d1, of the orbits in ~ç~’is equal

to d~_1+ 2. Onedefines:

q1~i)=_S~.

~i~1 : : fl~(exp [q~) (~)X1] . ~)

~(i)= 1(~(i1)) fl~ E ~7 p(~)*0}

~~i) p1(

1flo~, q~i)=q~l_l)o~ (1 (j<k
1)

A=X~o~ (1 (a(i—2—d1_1).
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Observethat p is definedonly if~z* 0.

The variables A, p, q which are thus introducedby a recurrenceprocedure

allow us to define a Moyal product on C(&2) or on the algebraN of rational
regularfunctionson ~7.This * productis in generalnotdefinedon S(~’).

PROPOSITION3. Let ~ be a nilpotent algebra and assumethat there exists a

* product on ~,*, definedon S(~),suchthat:

a*P=aP VaEI(~), VFES(~).

Thenthis * product is tangentialon theopenset ~2definedin 3(i).

Proof Let L E U(C IR~21~)(cf. 3, (iv)) and let W’~be an orbit in ~* defined

by X(~)= L (cf. 3, (b)). Let P be an elementof S(~)vanishing on W~’.Then
(cf. 3, (c))

F=f(A,p,q)

where f is a polynomial in p, q with coefficients which are rational functions

of A, definedon cz andvanishingfor A = L; that is:

a (A)
I,J j jF(A, ~ tj) = ~ b ‘A’ p q

I,J i,j’~ I

1= (i~. . . ~k);’r E IN (1 (r(k);p’= p
1

1..

= (/~ .i~);i,.E IN (1 (r(k);q~ = q~l . . . q~

and a
1~(resp. b1~) are polynomialssuch that a1~(L) = 0 (resp. b1~,doesnot

vanishon ~Z).By theconstructionabove,oneseesthat:

(p

1 qJ)(~)=
d

11(~)

where P~(~)E S(~) and d1~(~)E I(f~) and doesnot vanishon ~7.If we define:

R(~)= fl (d1~(~).b1~(x(~)))F

= ~ aKL(A(~))~L(~) fl d1~). b1~(A(E)))

K.L (1,J)*(K,L)

the * productof R by anarbitraryelementQ of S(f#) is:



340 0. ARNAL, M. CAHEN, S. GUTT

R * Q= 1J(dij(Ubij(x(~)))F* Q

(usingthe assumptionand(3(d))). Developping:

R * Q = ~aKL (A(U)( 11 d1~(~). b1~(X(~))) ~K,L * Q

K,L (LJ)�(K,L)

using again the assumption,3(d), and the fact that d1~EI(~).Thus by restric-

ting to W”:

fl (d~(~). b1~(A(~)))IWL . (P * Q) IWL =

= ~ aJ(~(X(E)) fl d1~) . b1~(A(U))IwL~1~’L* 0) = 0
K,L (I.J)#(K,L)

as a1~(L) = 0. The coefficient of the left hand side being different from 0,

onegets

(F* Q)IL= 0

and * is tangential.

4. THE ALGEBRA ~54: A COUNTEREXAMPLE

The algebracg54 is a 5 dimensionalreal nilpotent Lie algebra,which can be
described,in a basis X, (1 (i(S) by the only non vanishingcommutators:

[X5,X3] = X1 [X4, X3] = X2 [X5, X4] = — 2X3.

If we define = linear span of (X1,..., X.) we get an increasing chain of

ideals as describedin §3. Observethat if i( 3, the algebra~, is abelianand
the orbitsare thusreducedto points;in particularJ((g3) = S(~3).Clearly I(f~4) C

CI( ~3) as X3 is not an invariant function on ~ hence we are dealing with
the secondcaseof the recurrenceprocedureand d4 = 2. Let us chooseX~ = X3.

X4 the sonamedbasiselement;then ~.i = X2 and

p~
4~=X

4 ~

?44) = X1 ; = X2.
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On the otherhandI(fq4) C I(g5) as X1, X2 are central;henceweare dealingwith

the first caseof the recurrenceprocedureand d5 = 2. Let us chooseZ = aX5 + ~
as invariant;onechecksthat a solutionis

a—X ‘~——X
2—X X

— 2 “~ 3 1 4~

Thenonegets:

X
3

p~=p=X4 q~s)=q=_
not not

?45)= X1=X1, ?45) =
not not

A~
51=X

3=X2X5—X~—X1X4.

Remark. The Moyal * productin the variablesp and q is not definedon S(~).

A A
Indeed,let us computeX5 * X~with X5 = X2q

2 + —~p +
A

2 A2

P

2

X
5 *X~=X~+— C2(X5,X~)

2!

A
2 X2

C (X ,X~)= 2—~-=2—~-
2 5 A

2 X2

whichprovesthepoint.

PROPOSITION4. There does not exist on ~ * a * product defined on S(~),
which is differential and tangential on f2. Furthermore S(~g) is a free I(~g) module

and thus the * product constructed in proposition 2on S(~) is tangential.

Proof Let * be the Moyal *-producton ~2;it is tangentialdifferential but not

definedon S(~);assume*‘ is another* product which we assumeto be tan-
gential, differential and defined on S(~).If we denote by C,. (resp.C) the
cochainsdeterminingthesetwo * products,onehas [1] that:

— C) = 0 C2(u, v) — C2(u, u) = 0 = C~(u,v) — C~(u,u)

where ö is the Hochschildcoboundaryoperator.But a symmetric 2 cocycleis a
coboundary[14] and C2 — C~beeinga bidifferentialoperator,onehas

C2C~öA (*)

where A is a differential one cochain [14]. If we write a1 for the operator
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a
(1 (i ( 5), the formulasaboveshow that:

a5 aq=x2a3+2X3a5.

Theclassicalexpressionof the Moyal productreadsfor C2:

2X~
2C2(P, Q) = (a55Pa5Q+ ~5P~55Q) + termswith polynomialcoefficients

X2

(F, Q E S(’~)).

To prove the first part of the propositionit is sufficient to show that one can

not find a differential operator A, such that C~= C2 — ~A has polynomial
coefficients.Observethat the Moyal product vanisheson the constantsandso
does the product *‘ as it is tangential;hence A has no terms of order 0 in the

derivatives;the terms of order 1 in the derivatives form a cocycle and thus do
not contributeto the relation(*)~Now recall that if 6A is known,A is entirely
determinedby combinatorialformulas [15] up to those terms of order one. As

Moyal and *‘ are tangentialtheir cochainsinvolve only the derivativesa~and
aq. orin variablesX.,the derivativesa3, a4, ~. In particular

öA(X2X5 —X~—X1X4.F)= 0 (**)

Using the combinatorialformulaejust mentionedabove,the differentialoperator
A also involves only thosederivatives(seealso [9] for a later version). We shall

thuswrite:

A. . .
3 4 5

i3+ j4+ ~ 2

Developping(**) we get:

0 = (— 2(1 + l)X3 A1~11J — (/3 + l)(/3 + 2)A1 + 2/4Jç+

+ (/5 + 1)X2A111+ 1 —(/4 + l)X1A11 + a~a~a~p.

Hence,thisbeeingvalid for anyF:

—(/3 + l)(/3 + 2)A1~211= 0. (***)
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As by assumptionC~haspolynomial coefficients,the only non polynomial term

in ~A is:

X~
6A~2~1= — + polynomial terms.

2

Henceusingthe combinatorialformulas,the correspondingnon polynomial term

mA is:

x?
A~3= + polynomial terms.

3X2

To analysethe relations(***) we shall provea technicallemma.

LEMMA. If the integer /3> a + b, where a, b are non negative integers, the term
A. . . of the differential operator A doesnot contain a polynomial of the form

13/4 15

X~X~X~F(X~,X5).

Proof of the lemma. The proof is by recurrence.Assumefirst that a = b = 0 and

that the term A. . . containsa polynomialX~for a certain13> 0. If /3> 1 the
/3 1415

relation (***) reads:

A1 + = 1) ~ 2/3X3A111 —(14 + l)X1A1_114~11+

+ (/5 + l)X2A1111~1]

and this implies that A13~11415containsa polynomial~ In the case13 = 1,

the same argumentapplies becausethe only non polynomial term doesnot

involve X3. Thusif A. . . (j~ ~“ 1) containsa polynomialX~,A. + 1 ‘ contains
/3/4/5 /3 .1415

a polynomial ~ By recurrenceA1 + n,j4,j5 contains a polynomial X~
4‘~, in

particularit doesnot vanish;but this contradictsthe fact that A is a differential
operator,henceof finite order. We now assumethat, V k <m, theredoesnot

exist a polynomialX~X~Xçin A
13141 with /3> a + b = k. Examinethe case/3>

> a + b = m; if it contains~ then using (***) one seesas above that
A13 + 1,14,15 contains a term X~X~X~and iterating the argumentone sees

that thiscontradictsthe factthatA hasfinite order. •

To concludethe proofof the first part of the propositionwe shall now write

9 relations(***):
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(002) —2X3A102—2A202+3X2A003—X1A012=O

(102) —4X3A202—6A302+3X2A103—X1A112=0

(012) — 2X3A112—2A212 + 3X2A013—2X1A022= 0

(021) —2X3A121—2A221+ 2X2A022—3X1A031= 0

(120) —4X3A220—6A320+X2A121—3X1A130= 0

(210) —6X3A310—l2A410 + X2A211 — 2X1A220= 0

(011) —2X3A111—2A211+2X2A012—2X1A021=o

(020) — 2X3A120— 2A220 + X2A021 — 2X1 A030 = 0

(111) — 4X3A211 — 6A31, + 2X2A112— 2X1 A121 = 0.

<<Solving>> theseequations,usingthe previouslemma,gives

A202 = aX? + ... A012 = ~X1 + ... 2a +~= I (i)

A112 = — 4aX1X3+ ... A022 = 4aX? +

A121 = 4aX2X3 + ... A2~0= aX? +

A211 = 2aX1X2+

and the two relations:

13—4a=0 —24a=0

which contradicts(i). Hencethere doesnot exist A satisfying(*) and the first
part of the propositionis proven.

To provethe secondpart it is enoughto showthatS(~)is a free I(f~) module,

as one can then apply proposition 2. Observe that any polynomial F can be
written as

P=F0+X3F1

whereF0 andF1 are polynomialsin X~.As:

X~=X1 X~=X~ X?=—A3+X2X5--A1X4

onehas a decomppsitionofF:

~ ~
1,/EN
�E~0,i}

and ~ belongs to I(f~).This decompositionis unique; henceS(f~)is a free
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J(f~)module.

5. <<SPECIAL>> NILPOTENT LIE ALGEBRAS

The algebraicconstructiondone in § 2 rests on the assumptionthat S(~)is
an I(f~) free module.Dixmier [11] gives the following exampleof anilpotent

algebrafor whichS(~) is not a free I(f~)module;it is the 5 dimensionalalgebra
with basisx, y, z, t, u andnonvanishingbrackets:

[x,y]=t [x,z]=u.

This algebrabelongsto a classof nilpotent algebrasstudied by Corwin and

Greenleaf[16], for which we present a construction of * product, which is
differential, tangentialandgraded.

DEFINITION 6. A nilpotentalgebraf~is called <<special>>if it containsan abelian
ideal ~ whose codimensionk equals 1/2 of the maximal dimension of the

orbits of theadjointgroupin ~“.

Examples

(i) The 5-dimensionalalgebradefinedabove

(ii) The algebra of 2n x 2n matriceswhich are upper triangular; the ideal

..H has dimension n2 and is composedof thosematricesA such that A,k = 0
ifi>n orifk<n.

(iii) The algebra of dimension (n + 2) with basis { p, 1, q, q 2 q’~} and

with nonvanishingcommutators[p, q’] = iq’ 1, 1 (i (n.
If g is a n-dimensional <<special>> algebra, we shall choosethe increasing

sequenceof ideals fg
1 in such a way that ~ = .1!. Hencefor all i (n — k,

= S(~,) and the orbits are reducedto points, furthermoreif n — k <i (n
I(ç51) CI(f~1 1~andthe maximaldimensionof the orbits is d1 = 2(i + k—n).

PROPOSITION5. Let f~be a n-dimensional((special))nilpotentLie algebra. There
existsa * product on ~ *, definedon S(~),differential, gradedand tangential

on the Zariski open set f2.

Proof This * product is constructedby induction usingthe increasingchain of
ideals and an adaptedbasis{X1 1 ‘(1(n) of cg such that X1 E~1\~11.

If i (n — k andifF, Q ES(fg,) onedefines

F* Q=FQ.

If n — k <i (n and ifP, Q ES(~,)onedefines
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P1 Q = ~
1m~om!(l—m)! (D

1)
m a~mP*(D

1)l_m almQ

where a1 = ~ andD1is a derivationof(S(~11),*):

D1(P * Q)=(D,F) * Q+P * D,Q
i—i (i—i) (i—l)

definedby induction:

=

D~’~={X1,.}

and is a differential operator on ~ with polynomial coefficients,
vanishing on the constantsand on the linear functionsandsendingS~in S~’

2~’.

To give a meaningto the formulasabovewe extendD, to S(~g
1)(and thusalso

to ~‘~) by requiringthat:

D, (X,P) = (D1F) X,

andwe extend toS(~,)(andthusto (~~)by requiringthat

Xl * P=X,P VFES(~1).
(1— 1)

The ‘~ product being the usual product of functions if / (n — k we shall

assumethat (*) is definedon S(~11) with all the propertiesmentioned in the

proposition,and we shall constructby induction the derivationD.. Observefirst

that D~={X1,.} is a derivation of * up to order v
2 (using Jacobiidentity

and the usualpropertiesof the Poissonbracket).Let us assumethat:

D’=~v2kD~)

is a derivationof ~*) up to order~2l+ 2~Let usintroducea new product:

F*’Q =(exp—tD’)(exptD’ ~P * exptD’ .Q).
(i—i)

The expressionexp— tD’ has a meaningbecausethe coefficient of eachpower

of ~ is a finite sumof terms.Furthermorethis productis associative,hasthe right
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partiesandvanisheson the constants;henceis a * product. Now:

~ ~ Q) + C’
1)(D~)P Q) + C~’’~(PD~)Q))= 0

2/ + s =k

forallk(21+ 1.

Thus:

a
— (P*’ Q)= exp—tD’ [—D’(exp tD’P * exptD’ Q)+
at (1—1)

+D’~exptD’P * exptD’Q+exptD’P * D’exptD’Q]=
i—I i—i

= ~,2l+2 exp— tD~J~[ ~ (—D~/~~(exptD~F, exp tD~Q)+

[2/ + a = 2! + 2
s>0

+ d
3

1”(D~.’)exptD~F,exptD~Q)+ C~’~(exptD~~F,D~J~exp tD~Q))]

+ higherorderterms.

As C,~= Cr” for all k ( 21 + 1, C

1 ~ and ~ differ by a cocycle and in

view of thesymmetry,this cocycleis a coboundary:

C’ —C~’~~—&~’21+2 21+2 21+2

The expressionaboveshow that, at order2! + 2, andat t = 0,

C’ ‘t—0~’—C~’’~
21+2’ — — 2l+2~

Let us define:

a
-

21+ 2 at 21+2 t0~

By induction and use of the combinatorialformulasmentionedabove[15] one

seesthat D~]sends polynomials of degreek, on polynomialsof degreek — 2/,
that it vanisheson the constantsand annihilatespolynomialsof degree1; the

sameis thentrue forD~+2.We canrewrite the previousrelationsas:

D~1~2=tD~~2+0(t
2)

c
1~2 + t~5D21~2 + 0(t) = C~i4.

1~.

Define then:

D=D’+~2~2D~
2
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anda new product:

P*”Q=exp—tD(exptDF * exptDQ)=
(i —1)

= P *‘ Q up to order~
2l+ 2 =

=P * Quptoorder~21~2.
(i—I)

We have:

~
2(P, Q) = C,~ 2(P, Q) + ~ 2(P,Q) + 0(t

2) =

= C~1~(P,Q) + 0(t 2)

and thus

a
21+3

— (F * Q) = 0 up to order~
at

On the other hand:

a
—(F*”Q) =—D(F * Q)+(DF * Q)+(F * DQ)
at 1=0 (i—I) i—i (1—1)

and thus to show that D is a derivation up to order ~,2l+4 we mustshow that

(P *“ Q) = vanishesto this order. This we shall now prove and this will

ensuretheexistenceof the derivationD(,) by recurrence.
We have:

a a
— C~’

1~3(P, Q) = — C~~+3(P, Q) + ~ 2
at r=0 I

where a denotesthe Chevalleycoboundary.As C1 = C1’ for I ( 2! + 1, C1 + 2 =

= C~,T~’~—t~D~/~2 + 0(t
2), onegetsby standardresults[17] that:

= C.f

3 — taD21÷2 + A(t) + 0(t
2)

where A(t) is an antisymmetric bidifferential operator of order I in each
argument.Then:

a a
— C

1~3(F,Q) = — (Ci+3(F, Q) + taDW+2(P, Q)) =
at 1=0

a a
= — ~ 3(F, Q) + A (t)(P, Q)) = — (A(t)(P, Q))

at 1=0 t 1=0
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To computethis, it is enoughto evaluate,for k,/ (i — 1,

Xk *‘ X1 = exp — tD’ (exp tD’Xk * exp tD’X~)=

= exp — tD’ (exp tD~Xk * exp tD~X1) =

= exp — tD’ (exp tD~Xkexp tD~
0X

1+ v {exp tDg)X~,exp tD~)X1}).

Hence:

+ 3(Xk, X1)= (exp — tD’)21 + 2 exp tD 1c~’~{Xk, X’11 }
where(21 + 2) denotesthe componentof this orderin the P-expansion.

Thus:

a a
— A (t)(Xk, ~ L = — ((exp— tD’)2, + 2exptD~{Xk,X1}) = +

+ aD~]+2(Xk,X/)= —D~?+2({Xk,X/})= 0.

Hence C~+ ~ = = 0 and thus D is a derivation up to order v
21+ ~. Thus

the derivationof* on

D~’~=~X
1,.}+ ~

k> 0

has terms for all k> 0 vanishing on the constantsand on the functionsX~(/
(i — 1); furthermoreD~:S~-+S~

21.
To completetheproofwe now checkif the formulagivenabove:

(—1)’°

~1 ~ ~ m!(l—m)! (D
1)ma:_mp*(D1)I_marQ

definesa * productwhich is tangentialon f~.
By simpleuseof the definition we get:

C~’~(F,Q) = FQ

C~
1~(F,Q) = {F, Q}(f) = {F. Q}(

11) + a1PD1Q—D,pa1Q

where { , } denotesthe Poissonbracketon S(~,.)extendedto S(~)

~(i)(p Q) = ( l)~~(i)(Q F).

Also ifP, Q E S(~~1)onehas:
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P*Q=P* Q.
i i—i

In particularu * u = uv if U and v belongto S(Q,’).
If Q ES(~11):

X, * Q = X~Q + ~ Q}+ ~ ~D~Q +...

In particular this product is covariant as the ~ (1> 0) vanish on the linear

functions.Theproductis definedon S(~’1)andgraded.
Let now a E I(f~1) (C S(A’)); then:

a*P= ~ p

1 (D~a * a~P.
‘ ~=o 1!

We shall prove that D ~ a = { X

1, a } = 0 (as a is invariant); this will of course

imply that the productis tangential.It is enoughto provethat for any u E S(Jf),
D~’~u = {X1, u}. To do this we proceedby induction on the degreeof U; for

the degrees0 and 1 it is true by construction.Then for X1 EA’, u E S
1(A’)

D~(X
1.u)= D~(X1 * u) =

=D~X. * u+X. * D’u=
i—l i—i

={X1,X1}* u

= {X1, X1}u + X1{X1, u}={X,,X1 u}.

Thelast point to proveis associativity.Making everythingexplicit we get:

1 1 m 1—rn ( 1)rn+m

(P * Q) * R = p1+1
‘I(l_ ~ !( — . ~7_ —

1 1 1,l=Orn=Orn’=Or=Os=O ~‘ 1~ ~ ‘ 1~

D(1)T+maJ_m~P* D(i)l_m+ ‘~ —T a~+1—rn ~-s~ * D(i)~ma~R

a a’ b a—b ( 1)b + b~

P*(Q*R)= ~ ~
a,a’rrO b’0b’~’0c OdrrO b’!(a’ — b’)!c!(b — c)!d!(a — b — d)!

D(i)~~a~_bF*1D~”+ b’af.+a—bQ _~D(~_b—d+ a—b —c+ bR

andassociativityis provenby setting

a = 1’ + 5 + r c =
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b=m’+r d=l’—m’

a’ = l—r—s

= m — r

andcheckingthe inequalities. This endsthe proof.
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